Fast Sensor---RI-21 Series

RI-21 Series

Micro dry-reed switch hermetically sealed in a gas-filled envelope. Single-pole, single-throw (SPST) type, having normally open contacts, and containing two magnetically actuated reeds.

The switch is of the double-ended type and may be actuated by an electromagnet, a permanent magnet or a combination of both.

The device is intended for use in sensors,relays, pulse counters or similar devices.

RI-21 Series Features

\bullet General purpose reed switch

- High breakdown voltage
-Contact layers: gold, plated ruthenium
- Superior glass-to-metal seal and blade alignment
- Excellent life expectancy and reliability

Dimensions in inches (mm)

General data for all models RI-21

AT-Customization / Preformed Leads

Besides the standard models, customized products can also be supplied offering the following options:

- Operate and release ranges to customer specification
- Cropped and/or preformed leads

Coils

All characteristics are measured using the Philips Standard Coil. For definitions of the Philips Standard Coil, refer to "Application Notes" in the Reed Switch Technical \& Application Information Section of this catalog.

Life expectancy and reliability

The life expectancy data given below are valid for a coil energized at 1.25 times the published maximum operate value for each type in the RI-21 series.

Noload conditions(operating frequency: 100 Hz) Life expectancy:min. 10^{8} operations with a failure rate of less than 10^{-9} with a confidence level of 90%.

End of life criteria:
-Contact resistance $>1 \Omega$ after 2 ms

- Release time $>2 \mathrm{~ms}$ (latching or contact sticking).

Loaded conditions (resistive load: $12 \mathrm{~V} ; 4 \mathrm{~mA}$
(15 mA peak); operating frequency: 170 Hz)
Life expectancy: $\min 10^{7}$ operations with a failure rate
Of less than 10^{-8} with a confidence level of 90%.

End of life criteria:

- Contact resistance $>2 \Omega$ after 4 ms
\bullet Release time $>0.7 \mathrm{~ms}$ (latching or contact sticking).
Switching different loads involves
Different life expectancy and reliability data.
Further information is available on request.

Mechanical Data

Contact arrangement is normally open; lead finish is tinned; net mass is approximately 190 mg ;and can be mounted in any position.

Fast Sensor---RI-21 Series

Model Number
RI-21AAA
RI-21AA
RI-21A
RI-21B
RI-21C

Parameters Test Units

Operating Characteristics							
Operate Rangs		AT	$8-16$	$14-23$	$18-32$	$28-52$	$46-70$
Release Range		AT	$4-14$	$7.5-17.5$	$8-22$	$12-29$	$16-32$
Operate Time-including bounce (typ.)	Energization 100AT	ms	$0.1(20 \mathrm{AT})$	$0.25(29 \mathrm{AT})$	$0.25(40 \mathrm{AT})$	$0.25(65 \mathrm{AT})$	$0.25(88 \mathrm{AT})$
Bounce Time (typ)	Energization 100 AT	ms	$0.05(20 \mathrm{AT})$	$0.15(29 \mathrm{AT})$	$0.15(40 \mathrm{AT})$	$0.15(65 \mathrm{AT})$	$0.15(88 \mathrm{AT})$
Release Time (mas)	Energization100AT	us	$70(20 \mathrm{AT})$	$30(29 \mathrm{AT})$	$30(40 \mathrm{AT})$	$30(65 \mathrm{AT})$	$30(88 \mathrm{AT})$
ResonantFrequency (typ.)		Hz	5500	5500	5500	5500	5500

Electrical Characteristics

Switch Power (max)		W	10	10	10	10	10
Switch Voltage DC (max)		V	200	200	200	200	200
Switch Voltage AC,RMS value (max)		V	250	250	250	250	250
Switch Current DC (max)		mA	250	500	500	500	500
Switch CurrentAC,RMS value (max)		mA	250	500	500	500	500
Carry CurrentDC (max)		A	1	1.5	2.5	2.5	2.75
Breakdown Voltage (min)		V	225	325	375	500	650
Contact Resistance (initial max)	(energization)	$\mathrm{m} \Omega$	$100(20 \mathrm{AT})$	$100(25 \mathrm{AT})$	$100(30 \mathrm{AT})$	$100(40 \mathrm{AT})$	$100(40 \mathrm{AT})$
Contact Resistance (intial typ.)	(energization)	$\mathrm{m} \Omega$	$70(20 \mathrm{AT})$	$70(25 \mathrm{AT})$	$70(30 \mathrm{AT})$	$70(40 \mathrm{AT})$	$70(40 \mathrm{AT})$
Contact Capacitance (max)	withouttest coil	pF	0.3	0.3	0.25	0.25	0.25
Insulation Resistance (min)	$\mathrm{RH} \leq 45 \%$	$\mathrm{M} \Omega$	10^{6}	10^{6}	10^{6}	10^{6}	10^{6}

Shock
The switches are tested in accordance with "IEC 68-227 ",test Ea (peak acceleration150G, half sinewave; duration 11 ms). Such a shock will not cause an open switch (no magnetic field present) to close, nor a switch kept closed by an 80 AT coil to open.

Vibration

The switches are tested in accordance with "IEC 68-26 ",test Fc (acceleration 10G;below cross-over frequency 57 to 62 Hz ; amplitude 0.75 mm ; frequency range 10 to 2000 Hz , duration 90 minutes). Such a vibration will not cause an open switch(no magnetic field present) to close, nor a switch kept closed by an 80 AT coil to open.

MechanicalStrength

The robustness of the terminations is tested in accordance with "IEC 68-2-21",test Ua 1 (load 40N).
Operating and Storage Temperature
Operating ambient temperature; min: $-55^{\circ} \mathrm{C}$; max: $+125^{\circ} \mathrm{C}$.Storage temperature; min: $-55^{\circ} \mathrm{C}$; max:
$+125^{\circ} \mathrm{C}$. Note:Temperature excursions up to $150^{\circ} \mathrm{C}$ may be permissible. For more information contact your nearest Coto Technology sales office.

Soldering

The switch can withstand soldering heat in accordance with "IEC 68-2-20", test Tb, method 1B: solder bath at $350 \pm 10^{\circ} \mathrm{C}$ for $3.5 \pm 0.5 \mathrm{~s}$. Solderability is tested in accordance with "IEC 68-2-20",test Ta, method 3: solder globule temperature $235^{\circ} \mathrm{C}$; ageing $\mathrm{lb}: 4$ hours steam.

Welding

The leads can be welded.

Mounting

The leads should not be bent closer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.

