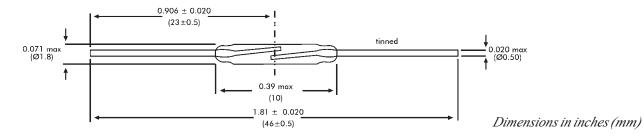
Fast Sensor---RI-60 Series

RI-60 Series


Ultra-miniature dry-reed switch hermetically sealed in a gas-filled glass envelope. Single-pole, single-throw (SPST) type, having normally open contacts, and containing two magnetically actuated reeds.

The switch is of the double-ended type and may be actuated by an electromagnet, a permanent magnet or a combination of both.

The device is intended for use in relays, sensors, pulse counters or similar devices.

RI-60Series Features

- •Ideal for ATE switching
- Contact layers: gold, sputtered ruthenium
- Superior glass-to-metal seal and blade alignment
- Excellent life expectancy and reliability

General data for all models RI-60

AT-Customization / Preformed Leads

Besides the standard models, customized products can also be supplied offering the following options:

- •Operate and release ranges to customer specification
- •Cropped and/or preformed leads

Coils

All characteristics are measured using the Philips standard coil. For definitions of the Philips Standard Coil, refer to the *Reed Switch Technical & Application Information* Section of this catalog.

Life expectancy and reliability

The life expectancy data given below are valid for a coil energized at 1.25 times the published maximum operate value for each type in the RI-60 series.

No-load conditions (operating frequency: 100 Hz) Life expectancy: min. 10^9 operations with a failure rate of less than 2×10^{-10} with a confidence level of 90%. End of life criteria:

- Contact resistance $> 1\Omega$ after 2 ms
- •Release time > 2ms (latching or contact sticking).

Loaded conditions (resistive load: 5 V; 100 mA;

operating frequency: 125 Hz)

Life expectancy: min. 2×10^7 operations with a failure rate of less than 10^8 with a confidence level of 90%. End of life criteria:

- •Contact resistance $> 1\Omega$ after 2.5 ms
- •Release time > 1 ms (latching or contact sticking).

Loaded conditions (resistive load: $20\ V; 500\ mA;$

operating frequency: 125 Hz)

Life expectancy: min. 2×10^7 operations with a failure rate of $< 10^8$ with a confidence level of 90%.

End of life criteria:

- •Contact resistance $> 2\Omega$ after 2.5 ms
- •Release time > 2.5 ms (latching or contact sticking).

Switching different loads involves different life expect- ancy and reliability data. Further information is avail- able on request.

Mechanical Data

Contact arrangement is normally open; lead finish is tinned; net mass is approximately 90 mg; and can be mounted in any position.

Fast Sensor---RI-60 Series

Model Number RI-60

Parameters

	Test Conditions	Units	
Operating Characteristics			
Operate Rangs		AT	7-21
Release Range		AT	3-16
Operate Time-including bounce (typ.)	(energization)	ms	0.15(25AT)
Bounce Time (typ)	(energization)	ms	0.035(25AT)
Release Time (mas)	(energization)	us	20(25AT)
Resonant Frequency (typ.)		Hz	11300
Electrical Characteristics			
Switch Power (max)		W	10
Switch Voltage DC (max)		V	200
Switch Voltage AC ,RMS value (max)		V	140
Switch Current DC (max)		mA	500
Switch Current AC, RMS value (max)		mA	500
Carry Current DC (max)		A	500
Breakdown Voltage (min)		V	230
Contact Resistance (initial max)	(energization)	mΩ	125(25AT)
Contact Resistance (intial typ.)	(energization)	$ m m\Omega$	95(25AT)
Contact Capacitance (max)	without test coil	pF	0.25
Insulation Resistance (min)	RH≤45%	$ ext{M}\Omega$	10^{6}

Shock

The switches are tested in accordance with "IEC 68-2-

27", test Ea (peak acceleration 100 G, half sinewave; duration 11 ms). Such a shock will not cause an open switch (no magnetic field present) to close.

Vibration

The switches are tested in accordance with "IEC 68-2-

26", test Fc (acceleration 10G; below cross-over fre-quency 57 to 62 Hz; amplitude 0.75 mm; frequency range 10 to 2000 Hz; duration 90 minutes.) Such a vibration will not cause an open switch (no magnetic field present) to close, nor a switch kept closed by an

80 AT coil to open.

Mechanical Strength

The robustness of the terminations is tested in accordance with "IEC 68-2-21", test Ua, (load $10\,\mathrm{N}$).

Operating and Storage Temperature

Operating ambient temperature; min: -55°C; max: +125°C. Storage temperature; min: -55°C; max: +125°C. Note: Temperature excursions up to 150°C may be permissible. For more information contact your nearest Coto Technology sales office.

Soldering

The switch can withstand soldering heat in accordance with "IEC 68-2-20", test Tb, method 1B: solder bath at $350\pm10^{\circ}$ C for 3.5 ± 0.5 s. Solderability is tested in accordance

with "IEC 68-2-20" test Ta, method 3: solder globule temperature 235°C; ageing 1b: 4 hours steam.

Welding

The leads can be welded.

Mounting

The leads should not be bent closer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.